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PL-EVIO: Robust Monocular Event-Based Visual
Inertial Odometry With Point and Line Features

Weipeng Guan , Peiyu Chen , Yuhan Xie , Member, IEEE, and Peng Lu

Abstract— Robust state estimation in challenge situations is
still an unsolved problem, especially achieving onboard pose
feedback control for aggressive motion. In this paper, we propose
robust and real-time event-based visual-inertial odometry (VIO)
that incorporates event, image, and inertial measurements. Our
approach utilizes line-based event features to provide additional
structure and constraint information in human-made scenes,
while point-based event and image features complement each
other through well-designed feature management. To achieve
reliable state estimation, we tightly couple the point-based
and line-based visual residuals from the event camera, the
point-based visual residual from the standard camera, and the
residual from IMU pre-integration using a keyframe-based graph
optimization framework. Experiments in the public benchmark
datasets show that our method can achieve superior performance
compared with the state-of-the-art image-based or event-based
VIO. Furthermore, we demonstrate the effectiveness of our
pipeline through onboard closed-loop quadrotor aggressive flight
and large-scale outdoor experiments. Videos of the evaluations
can be found on our website: https://youtu.be/KnWZ4anBMK4.

Note to Practitioners—Driven by the need for real-time closed-
loop control for drones under aggressive motion and broad
illumination environments, many existing VIO systems fail to
meet these requirements due to the inherent limitations of
standard cameras. Event cameras are bio-inspired sensors that
capture pixel-level illumination changes instead of the intensity
image with a fixed frame rate, which can provide reliable visual
perception during high-speed motions and in high dynamic
range scenarios. Therefore, developing state estimation algo-
rithms based on event cameras offers exciting opportunities for
robotics. However, adopting event cameras is challenging due
to the event streams being composed of asynchronous events
which are fundamentally different from the synchronous intensity
images. Moreover, event cameras output minimal information or
even noise when the relative motion between the camera and the
scene is limited, such as in a still state, while standard cameras
can provide rich perception information in most scenarios.
In this paper, we propose a robust, high-accurate, and real-
time optimization-based monocular event-based VIO framework
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that tightly fuses the event, image, and IMU measurement
together. Owing to the well-designed framework and good feature
management, our system can provide robust and reliable state
estimation in challenging environments. The efficiency of our
system is adequate to achieve real-time operation on platforms
with limited resources, such as providing onboard pose feedback
for quadrotor flights.

Index Terms— Event cameras, event-based VIO, aggressive
quadrotor, sensor fusion, robotics, SLAM.

I. INTRODUCTION

A. Motivations

STANDARD cameras have inherent limitations, including
sensing latency and low dynamic range, which is chal-

lenging for image-based Visual Odometry (VO), Visual Inertial
Odometry (VIO), and Simultaneous Localization and Mapping
(SLAM) systems to detect and track features under high-speed
motion or high-dynamic-range (HDR) scenarios. Specifically,
robust state estimation is vital for real-time feedback control
in aggressive motion (e.g. onboard quadrotor flip, as shown
in Fig.1(a)), since even tiny drifts or momentary poor feature
tracking can potentially lead to a crash. Event cameras offer
exciting opportunities to solve the aforementioned problems,
which possess several advantages over standard cameras,
including low latency (µs-level), HDR (140 dB), and no
motion blur [1].

Most of the research in both image and event-based
SLAM/VO/VIO rely on point-based features, while it is impor-
tant to note that human-made structures often exhibit regular
geometric shapes, such as lines or planes. Therefore, point-
based features may not always be the optimal representation
for visual tracking in all scenarios. Performance degeneracy
might occur when only using point-based features, while
point-based features are more common in natural scenes.
Therefore, for heterogeneous event-based information utiliza-
tion, we design and extract the line-based feature in the
event stream to improve the performance of purely point-
based features, since the line-based features can reflect more
geometric structure information than point-based features [2],
[3] [4]. As can be seen in Fig.1(b) Fig.3, and Fig.11(b), the
integration of the line-based feature and point-based feature
can further ensure a more uniform distribution of the features
and provide additional constraints on scene structure.

In addition, compared to standard cameras, event cameras
are capable of providing reliable visual perception during
high-speed motion and HDR scenarios. However, when the
event camera and the scene have restricted relative motion,
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Fig. 1. (a) Our PL-EVIO combines events, images, and IMU to provide
robust state estimation during aggressive motion. It can provide onboard
feedback-control for quadrotors with limited computational resources. (b) Our
PL-EVIO in the outdoor environment. Left: event-corner features in the event;
Middle: line-based features in the event; Right: point-based features in the
image.

such as in a static state, event cameras may produce limited
information or even noise. Although the standard camera
encounter difficulties during high-speed motion or in HDR
scenarios, it can provide rich intensity value of the scenes
under uniform motion or favorable lighting conditions.

Observing this complementary, we propose a monocu-
lar VIO framework for a sensor setup that includes event,
image, and inertial measurement unit (IMU) data, with a
well-designed feature management system. Our VIO frame-
work includes the purely event-based VIO (EIO), and the event
with image-based VIO (EVIO). More specifically, we first
implement a motion compensation algorithm using the IMU
data to correct the motion of each event according to its indi-
vidual timestamp, including rotation and translation motion,
into the same timestamp. After that, utilizing the event-corner
features detection and tracking approach developed in our pre-
vious EIO work [5]. We conduct an EIO framework, including
the line-based event features and the event-corner point fea-
tures, termed PL-EIO (Event+IMU), to perform robust state
estimation. Finally, we integrate image measurements into our
PL-EIO framework as the PL-EVIO (Event+Image+IMU),
in which visual landmarks include event-corner features, line-
based event features, and point-based image features. These
three kinds of features are well integrated together to leverage
additional structure or constraint information for more accurate
and robust state estimation.

B. Contributions

Our contributions are summarized as follows:
1) In order to handle the HDR situations and aggres-

sive motion, especially the onboard aggressive motion,
we propose the PL-EVIO pipeline, which tightly fuses
the event-corner features, line-based event features, and
point-based image features together, to provide robust
and reliable state estimation.

2) To address the performance degradation when only
using point-based features in human-made structures,

we design the line-based feature and descriptor in
event-based representation for front-end incremental
estimation.

3) We validate that our PL-EVIO can achieve state-of-the-
art performance in different challenging datasets. It also
can be used as onboard pose feedback control for the
quadrotor to achieve aggressive motion, e.g. flip.

The remainder of the paper is organized as follows:
Section II introduces the related works. Section III introduces
the principle of our proposed method. Section IV presents the
experiments and results. Finally, the conclusion is given in
Section V.

II. RELATED WORKS

A. Event-Based Representation and Feature Extraction

Event cameras are motion-activated sensors that capture
pixel-level illumination changes instead of the intensity image
with a fixed frame rate. An event is triggered only when the
intensity of an individual pixel varies beyond a specific thresh-
old Tthreshold , which can be represented as the spatio-temporal
coordinates of the intensity change and its sign:

e = {t, x, y, p} ⇔ I (x, y, t + △t) − I (x, y, t) = p · Tthreshold

(1)

where t is the timestamp that the intensity of a pixel I (x, y)

changes, and p is the polarity that indicates the direction
of the intensity change. The generation model of the event
stream endowed some good properties, which also allow the
event camera to confer robustness to vision-based localiza-
tion in challenging scenarios. However, adopting the event
camera into the SLAM/VO/VIO is a very challenging task
since the event streams are in asynchronous formats which
is fundamentally different from the synchronous image data.
Therefore, most methods and concepts developed for con-
ventional image-based cameras can not be directly applied.
To enable the asynchronous event data into the synchronous
data representation, different kinds of event representation
have been proposed:

(i) The first method is directly working on the raw event
stream without any frame-like accumulation. Reference [6]
proposed a feature tracker that employe the descriptors for
event data. Reference [7] presented a feature tracker based
on Expectation Maximisation (EM). References [8] and [9]
extracted the line feature from the raw asynchronous events.
There are several other ways to represent the raw event, such as
Voxel Grid or Event spike tensor [10]. However, these higher
dimensional or learning-based event representations will not
be discussed here.

(i i) The second approach is combining with the image
sensor, or generating the intensity image from the event
through learning-based methods. References [11] and [12]
firstly detected the features on the grayscale image frames, and
then track the features asynchronously using event streams.

(i i i) The third representation is the motion-compensated
event image, or edge image, which is generated by aggregating
a group of neighbor events within the spatio-temporal win-
dow into an edge image. References [13] and [14] adopted
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the conventional corner detection algorithms, such as FAST
corners [15] or Shi-Tomasi [16] for feature detection, and the
Lucas Kanade (LK) optical flow [17] for feature tracking in
the event image.

(iv) The last method is the time surface (TS) or Surface
of Active Event (SAE), which is a 2D map where each pixel
stores the time value. It can summarize and update the event
stream at any given instant, or encode the spatio-temporal
constraints of the historical events. Using an exponential decay
kernel, TS can emphasize recent events over past events [18].
tlast is the timestamp of the last event at each pixel coordinate
x = (u, v)T , the TS at time t ≥ tlast (x) is defined by:

T (x, t) = exp(−
t − tlast (x)

η
) (2)

where η is the decay rate parameter. References [19] and [20]
use the SAE or TS to inspect previously triggered events in
the stream and the adjacent pixels for classifying a new event
as an event-corner.

B. Event-Based Motion Estimation

Event-based state estimation has been extensively developed
to handle challenging scenes in recent years, particularly in
scenarios where traditional cameras struggle to perform well,
such as high-speed motion estimation or HDR perception.
Reference [21] proposed the first event-based SLAM system,
which is limited to tracking planar motions while reconstruct-
ing the 2D ceiling map with an upward-looking event camera.
References [11] and [22] proposed the event-based VO to track
camera motion. However, these methods still relied on the
standard camera, which was still susceptible to motion blur
and low dynamic range. The first purely event-based 6-DoF
(Degree-of-Freedom) VO was presented in [23], which per-
formed real-time event-based SLAM through three decoupled
probabilistic filters that jointly estimate the 6-DoF camera
pose, 3D map of the scene, and image intensity. However, it is
computationally expensive and requires GPU to achieve real-
time performance. EVO [24] was proposed to solve the SLAM
problem without recovering image intensity, thus reducing
computational complexity, and it can run in real-time on
a standard CPU. It performs a tracking approach based on
image-to-model alignment and adopts the 3D reconstruction
method from EMVS [25] to perform the mapping. However,
the EVO is needed to run in the scene that is planar to the
sensor, for up to several seconds, for bootstrapping the system.
ESVO [26] is the first stereo event-based VO method, which
follows a parallel tracking-and-mapping scheme to estimate
the ego-motion and the semi-dense 3D map of the scene. How-
ever, it barely operates in real-time in DAVIS346 (346*260)
and also faces limitations due to rigorous initialization as well
as unreliable pose tracking. Reference [27] proposed stereo
VO for event cameras based on features. The pose estimation
is done by re-projection error minimization, while the features
are stereo and temporally matched through the consecutive left
and right event TS. It solves the problems of ESVO mentioned
above. However, it still cannot operate in real-time in high-
resolution event cameras (640*480).

The robustness of event-based SLAM/VO systems can be
improved by incorporating IMU measurements. The first EIO
method was proposed in [28] which fused a purely event-based
tracking algorithm with pre-integration IMU measurement
through the Extended Kalman Filter. Another EIO method was
proposed in [13]. It detects and tracks the features in the edge
image, which is generated from motion-compensated event
streams, through traditional image-based feature detection and
tracking methods. Finally, the tracked features are combined
with IMU measurement using keyframe-based nonlinear opti-
mization. The authors extended their method to leverage the
complementary advantages of both standard and event cameras
in Ultimate-SLAM [14] to fuse events image frames, standard
frames, and IMU. To some extent, these methods use the
edge image to realize VIO, this might introduce bottlenecks
since it requires substantial parameter adjustments depending
on the varying number of generated events in the scene.
EKLT-VIO [29] combined the event-based tracker [12] as
the front-end with a filter-based back end to perform the
EVIO for Mars-like sequences. However, it is pretty hard
to perform in real-time even in the lowest resolution event
camera. Reference [30] proposed to fuse events and IMU
measurement into a continuous-time framework. While their
approach cannot achieve real-time since the expensive opti-
mization is required to update the spline parameters upon
receiving every event [13]. In our previous work [5], we pro-
posed a monocular EIO which the event-corner features with
IMU measurement to provide real-time 6-DoF state estimation
even in high-resolution event cameras. Furthermore, this EIO
framework can bootstrap from unknown initial states and
can ensure global consistency thanks to the loop closure
function. Nonetheless, it still cannot provide onboard pose
estimation for closed-loop control of the quadrotor flight since
event cameras produce minimal information or noise when
stationary. Recently, there have been several studies focusing
on stereo EVIO [31], [32].

There are several works in event-based vision that utilize
line features. IDOL [9] calculates the normal vectors in the
spatio-temporal space for each incoming event by utilizing a
local neighborhood. Events with similar normal vectors are
clustered together to form lines, and an EIO algorithm uses
these detected lines and inertial measurements to estimate
camera poses. However, this approach assumes that lines
move at nearly a constant speed in short intervals, leading
to the aggressive motion being avoided in their validation
experiments and loss of the advantages of event cameras.
What’s more, this method lacks real-time capabilities even
with low-resolution event cameras (240*180). Reference [33]
employed the Hough transformation on spatial images gener-
ated from a 3D point-based map to cluster event data into a
collection of 3D lines. These lines are subsequently integrated
into the Kalman filter to estimate the 3D lines and camera
pose. However, their event-to-line matching method suffers
from the sudden surge of incoming events [34] caused by
aggressive motion, scene complexity, and sudden illumination
changes. Additionally, this approach is sensitive to event
sparsity and requires at least 6 non-parallel 3D lines, a known-
scale predefined marker, or ground-truth pose readings for
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Fig. 2. The framework of our PL-EIO (Event+IMU) and PL-EVIO (Event+Image+IMU).

system bootstrapping. Both spatio-temporal relationship [9]
and Hough transformation [33] are utilized in event data to
cluster events that belong to the same straight lines. In contrast,
our approach utilizes the line segment detector (LSD) [35] to
extract event-based line features and strike a balance between
performance and computational efficiency. Unlike these two
methods that solely rely on the line feature and may be
susceptible to high levels of texture in the scene, our method
leverages the complementarity of point and line features to
enhance its robustness. Moreover, [8] utilized event cameras
for powerline tracking. Their method involved detecting planes
in the spatio-temporal signal to identify lines in the event
streams and subsequently incorporating events into these lines
while tracking them over time. However, their approach is
restricted to powerline inspection tasks and does not involve
the data association of event-based line features or utilization
for incremental pose estimation.

III. METHODOLOGY

A. Framework Overview

The structure of our proposed method is illustrated in Fig.2,
which is composed of two sections: (i) The EIO Front-end
takes the motion-compensated event stream as input and
extracts the event-corner features and the line-based event
features. There are two kinds of event representations: the
TS with polarity Tp(x, t) = p · exp(−(t − tlast (x))/η) and
the normalized TS without polarity Tnp(x, t) = 255.0 ·

(T ′
− min(T ′))/(max(T ′) − min(T ′)), which are generated

from the SAE for point & line feature tracking and loop
closure detection, respectively. More detailed discussions of

these two kinds of event representations can be seen in
APPENDIX A and [5] (i i) The EIO Back-end tightly fuses the
point landmarks, line landmarks, and the IMU pre-integration
to estimate the 6-DoF state, while the loop closure is used
to eliminate the accumulated drifts. Finally, to achieve low
latency, we also directly forward propagate (loosely-coupled)
the latest estimation with the IMU measurements to achieve
IMU-rate state outputs which can be up to 1000 Hz. This can
ensure the requirement of closed-loop autonomous quadrotor
flight.

For the keyframe in the sliding window, it is selected by
two criteria and only based on the event-corner features:
(i) When the average parallax of the tracked event-corner
features between two consecutive timestamps exceeds a
threshold (10 is set in our experiment). (i i) When the number
of successfully tracked event-corner features from the last
timestamp falls below a certain threshold (20 is set in our
experiment).

As for the initialization procedure of our framework, which
is adopted from [36] and [37], our pipeline commences with
a vision-only structure from motion (SfM) to establish the
up-to-scale structure of camera pose and event-corner feature
positions. By loosely aligning the SfM with the pre-integrated
IMU measurements, it can bootstrap the system from unknown
initial states rather than using marker [33] or assuming the
local scene is planar to the sensor [24]. It is worth mentioning
that if the image is available in the framework, we only
employ the point-based image visual measurement for SfM
initialization to ensure reliable visual-inertial alignment and
up-to-scale camera poses.
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Fig. 3. Three different kinds of features in our PL-EVIO framework: event-corner features, event-based line features, and image-based point features.

Regarding loop closure, extra event corners are detected
in the EIO Front-end, subsequently described by the BRIEF
descriptor, and fed to the Back-end. These additional
event-corner features are used to achieve a better recall rate on
loop detection. Thanks to our designed normalized TS without
polarity, which is triggered in scenes with strong edges, it can
eliminate accumulated drifts and ensure global consistency.
The correspondences are found through the BRIEF descriptor
matching by calculating Hamming distance. When the number
of corresponding event descriptors is greater than a certain
threshold (16)-25 in our experiments), the loop closure is
detected. After detecting the loop, the connection residual of
the previous keyframe and the current keyframe are integrated
into the nonlinear optimization as a re-localization residual.

We further extend our PL-EIO framework to include
point-based image features to provide a more robust state
estimation (PL-EVIO). Fig.3(a) shows the complementarity of
the image and event information. For the bad lighting area,
the event can provide reliable event-corner features, while the
image can provide rich point-based features in other areas.
This enables the uniform distribution of the point-based event
and image features in the scene. While the line-based event
feature can provide more constraints (shown in Fig.3(b)) even
when the successfully tracked point-based event and image
features are less in the scene. Our framework can provide
a more robust and accurate state estimation. More details of
event-based point and line feature detection and tracking in
our framework can be seen in the APPENDIX A.

B. Motion Compensation for the Event Stream Using IMU
Measuremnet

Events can be triggered either by moving objects or by
the ego-motion of the camera. Similar to Ref. [38], we only
rely on the IMU for motion compensation, which guarantees
efficiency and speed. For the new event stream coming, we use
the angular velocity and linear acceleration from the IMU
averaged over the time window where the events are grouped
in the same event stream, to estimate the ego-rotation and
ego-translation of each event. Using this ego-motion to warp

the events into the timestamp of the first event in the same
event stream. The motion (considering both rotation R and
translation T ) of each event can be calculated through:

1(δt) =

[
R(ωI MU δt) T

0 1

]
=

[
R(ωI MU δt)

1
2
α I MU δt2

0 1

]
(3)

where ωI MU and α I MU are the angular velocity and linear
acceleration measurements from the IMU in the current event
stream timestamp. While R(ωI MU δt) is the rotation matrix
generated from the angular velocity ωI MU and the time
difference δt . Each event ei = {eti , exi , eyi , epi } of the event
stream is then warped by 1(δt) = 1(eti − t f irst_event ), where
t f irst_event is the timestamp of the first event of the current
event stream and eti is the timestamp of event ei .

C. Event-Corner Feature Detection and Tracking

The SAE would be updated through the motion-
compensated event stream, while the existing event-corner
features are tracked by the LK optical flow on the TS with
polarity Tp(x, t) which is generated from the updated SAE
(shown in Fig.4(c)). Different from our previous EIO [5],
in this work, we use a two-way tracking strategy to track
event-corner features between two consecutive timestamps.
For any event-corner feature Fe on last timestamp Tp(x, t) is
tracked to F ′

e on current timestamp Tp(x, t), we would reverse
the tracking process by tracking F ′

e on current timestamp
Tnp(x, t) back to F ′′

e on last timestamp Tp(x, t). If the distance
between F ′′

e and F ′
e is smaller than a threshold (1.0 pixel in

our experiment), this event-corner feature would be viewed as
being successfully tracked. The event-corner features that are
not successfully tracked in the current timestamp would be
discarded immediately.

Whenever the number of the tracked features falls below
a certain threshold (150-250 in our experiment), new
event-corner features would be detected from the latest
motion-compensated event stream (shown in Fig.4(a)) for
future feature tracking. Modified from the publicly available
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Fig. 4. The event-corner feature detection and tracking: (a) Detecting features
from raw event streams; (b) Using the TS with polarity as the mask for uniform
distribution of the event-corner features; (c) Tracking feature in the TS with
polarity.

implementation of the Arc* algorithm [20] for event-based
corner detection, we extract the event corners on the indi-
vidual event by leveraging the SAE rather than adopting
the conventional corner detection algorithms in frame-like
accumulation (like References [13], [14]). The newly detected
event-corner features would be further selected by setting the
TS with polarity as the mask (shown in Fig.4(b)). To enforce
the uniform distribution, a minimum distance (10-20 pixels
for different resolution event cameras) is set between two
neighboring event-corner features. Meanwhile, we maintain
the event corners, where the pixel value of the TS with polarity
is not equal to 128.0, to emphasize the detected event-corner
features located in the strong edges rather than the numerous
noisy features in low texture areas.

Furthermore, all the event-corner features in the front-end
are undistorted based on the camera distortion model
and projected to a normalized camera coordinate system.
To remove outliers, we also use the Random Sample Consen-
sus (RANSAC) for outliers filtering. Finally, we recover the
inverse depth of the event-corner features that are successfully
tracked between two consecutive timestamps through triangu-
lation. The point-based landmark whose 3D position has been
successfully calculated would be fed to the sliding window for
nonlinear optimization.

D. Line-Based Feature Detection and Matching on Event
Stream

Utilizing the line-based features to improve the performance
of point-based VIO is effective as line features can provide
additional constraints and structure information in the scene,
especially for the human-made environment. Therefore, for
incoming new event streams, after using motion compensation,
the streams are mapped into the Opencv-Mat format (event
mat). Given that events are typically triggered in scenes
with strong edges, generating line features using the event
mat can prevent the generation of invalid line features and
enhance efficiency. To efficiently extract line-based features
and descriptors from the raw event streams, we have modified

the LSD algorithm [35] in Opencv. Utilizing the Sobel filter,
we compute the orientation of each event in the event mat and
group events with similar angles into a line support region.
Additionally, we have studied the hidden parameter tuning
and length rejection strategy of the LSD algorithm, drawing
inspiration from [4] to filter out short line features using a
length rejection strategy:

Lmin = η · min(W, H) (4)

where min(W, H) denotes the smaller value between the width
and the height of the event camera. η is the ratio factor
(0.125 is set in our experiments). After that, we adopt the
Line Band Descriptor (LBD) [39] to describe and match line
features, respectively. In particular, to ensure good tracking
performance and be consistent with point-based event-corner
features, we also use the TS with polarity for LBD generation
and line-based feature matching. We further execute the line
features refinement schemes to identify line features as good
matches for successful line tracking:

• The Hamming distance between matching line features is
less than 30;

• The square error of the endpoint between the matching
line features is less than 20 * 20 pixel2;

• The angular between matching line features is less than
0.1 rad;

The successfully tracked line-based event features would be
further refined by undistorting the endpoints of the lines and
projected onto a unit sphere after passing outlier rejection.
The outlier rejection is performed using RANSAC with a
fundamental matrix model. Then, we obtain the line-based
landmark by triangulating the correspondences of two line
features. The line-based landmark whose 3D position has been
successfully calculated would be fed to the sliding windows
for the nonlinear optimization.

E. Sliding Windows Graph-Based Optimization Based on the
Point-Line Features

1) Formulation of the Nonlinear Optimization: The full
state vector in the sliding windows is defined as:

χ = [χb, λe, φl , λc, T b
c , T b

e ] (5)

where λe = [λ0, . . . , λmth
event

], and λc = [λ0, . . . , λmth
image

]

is the inverse depth of the m th
event event-corner features

and m th
image point-based image features, respectively, while

φl = [φ0, . . . , φmth
line

], φmth
line

= [θT , o] is the four-parameter
orthonormal representation ( as shown in Eq.(12) and Eq.(13))
of the m th

line line-based event features, in the sliding windows.
T b

c = [Rb
c , tb

c ] or T b
e = [Rb

e , tb
e ] is the extrinsic transformation

from camera frame (the image c or event e) to the body (IMU)
frame b (T b

c = T b
e when using the DAVIS which can simulta-

neously output the image and event data); χb = [X1, . . . , X K ]

is the optimization vector in the sliding windows, which
comprises the state of the IMU, with K (K = 10 in our
experiments), the total number of keyframes in the sliding
windows. The system state Xk at k th keyframe is given by the
position pw

bk
, orientation quaternion qw

bk
, and the velocity vw

bk
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of the IMU in the world frame, and the accelerometer bias bak

and gyroscope bias bgk as follows:

Xk = [ pw
bk

, qw
bk

, vw
bk

, bak , bgk ] (6)

Joint nonlinear optimization is solved for the maximum a
posteriori estimation of χ , while the cost function can be
written as:

J(χ) =

K−1∑
k=0

∑
l∈ζ

||ek,l
event ||

2
W k

event
+

K−1∑
k=0

∑
l∈ℓ

||ek,l
line||

2
W k

line

+

K−1∑
k=0

||ek
imu ||

2
W k

imu
+

K−1∑
k=0

∑
l∈ξ

||ek,l
image||

2
W k

image

+ ||em ||
2
Wm

+ ||er ||
2
Wr

(7)

Eq.(7) contains the point-based event residual ek,l
event

with weight W k
event ; the line-based event residual

ek,l
line with weight W k

line; the IMU pre-integration residuals ek
imu

with weight W k
imu ; the point-based image residual ek,l

image with
weight W k

image; the marginalization residuals em with weight
Wm ; the re-localization residuals er with weight Wr ; while ζ ,
ℓ, and ξ are the set of event-corner features, line-based event
features, and point-based event features, respectively, which
have been successfully tracked or matched at least twice in
the current sliding window.

2) Point-Based Event Visual Measurement Residual: The
ek,l

event in Eq.(7) is the event-corner measurement residual from
the re-projection function. Considering the l th event-corner
feature that is first observed in the i th keyframe, the residual
for its observation in the k th keyframe is defined as:

ek,l
event =

[
ul

k
vl

k

]
− πe · (T b

e)
−1

· T bk
w · Tw

bi
· T b

e · π−1
e (

1
λe

,

[
ul

i
vl

i

]
)

(8)

where,
[
ul

i , v
l
i

]T is the first observation of the l th event-
corner feature in the i th keyframe.

[
ul

k, v
l
k

]T is the observation
of the same event-corner feature in the k th keyframe, πe

and π−1
e are the projection and back-projection function of

the event camera, respectively, which include the intrinsic
parameters for the transform between the 2D pixel coordinates
and normalized event camera coordinate. Tw

bi
indicates the

movement of the body frame related to the world frame in
timestamp i , T bk

w is the transpose of the pose of the body in
the world frame in the k th keyframe.

3) Line-Based Event Visual Measurement Residual: The
ek,l

line in Eq.(7) is the line-based event measurement residual
which is generated from line re-projection model. The line
re-projection residual is modeled as the distance from the end-
points of the line to the projected line in the normalized image
plane. The l th line-based landmarks in the world frame can
be defined using the Plücker Coordinate: Ll

w =
[

nl
w, dl

w

]T
,

nl
w denotes the normal vector of the plane determined by

Ll
w and the origin of the world frame, while dl

w denotes
the direction vector determined by the two endpoints of Ll

w.
Given the transformation matrix T bk

w =
[
Rbk

w , tbk
w

]
indicates

the movement of the body frame related to the world frame
in timestamp k, we can obtain the transformation from the

world frame to the event frame in timestamp k through T ek
w =

T e
b · T bk

w , where T e
b = [Re

b, te
b] is the extrinsic transformation

from the body (IMU) frame b to the event camera frame e.
Then, we can transform the l th line-based event feature Ll

w

in k th keyframe from world frame to event camera frame by
[40], [41]:

Ll
ek

=

[
nl

ek

dl
ek

]
=

[
Rek

w [tek
w ] × Rek

w

0 Rek
w

][
nl

w

dl
w

]
(9)

where Rek
w = Re

b · Rbk
w , tek

w = Re
b · tbk

w + te
b.

The transformation for the Plücker Coordinates of the l th

line-based event feature from i th keyframe to k th keyframe in
the body frame can be represented as follows:

Ll
bk

=

[
nl

bk

dl
bk

]
=

[
Rbk

bi
[tbk

bi
] × Rbk

bi

0 Rbk
bi

][
nl

bi

dl
bi

]
(10)

where T bk
bi

=

[
Rbk

bi
, tbk

bi

]
indicates the movement of the body

frame related to the world frame in i th keyframe to k th

keyframe.
The Plöcker Coordinates Ll

w can be represented using a
four-parameter orthonormal representation, known for its supe-
rior convergence performance [40]. As a result, we transfer
the line-based landmark to the four-parameter orthonormal
representation for the optimization process. The orthonormal
representation (U, W) ∈ (SO(3), SO(2)) of the Plücker
Coordinates Ll

w can be computed using the QR decomposition
[4], [40]:

[nl
w|dl

w] = U

w1 0
0 w2
0 0

, set : W =

[
w1 −w2
w2 w1

]
(11)

where U and W denote a three and a two dimensional rotation
matrix, respectively. Let R(θ) = U and R(o) = W be the cor-
responding rotation transformations, where U = [u1, u2, u3].
With this notation, we can now express the relationship as
follows:

R(θ) = U =

[
nl

w

||nl
w||

,
dl

w

||dl
w||

,
nl

w × dl
w

||nl
w × dl

w||

]
(12)

R(o) = W =

[
cos(o) −sin(o)

sin(o) cos(o)

]
=

1√
||nl

w||2 + ||dl
w||2

[
||nl

w|| −||dl
w||

||dl
w|| ||nl

w||

]
(13)

Up to this point, we have established the connection between
the four-parameter orthonormal representation φmth

line
= [θT, o]

of Eq.(5) and the Plöcker Coordinates Ll
w.

The Plücker Coordinates Ll
ek

in the event camera frame can
be obtained from Ll

w through Eq.(9), and then can be projected
to the line l l

ek
in the event imaging plane by

l l
ek

=
[

l1, l2, l3
]T

= πenl
ek

(14)

where πe is the projection function of the event camera, and
the nl

ek
can be obtained from Eq.(9). The line re-projection

error in Eq.(7) can be defined as:

ek,l
line =

[
d(Sl l

ek
, l l

ek
)

d(E l l
ek
, l l

ek
)

]
(15)
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where Sl l
ek

and E l l
ek

are the homogeneous coordinates of the

endpoints of the line feature l l
ek

in the image plane, and
d(m, l l

ek
) denotes the point-to-line distance function from the

endpoints to the projection line l l
ek

:

d(m, l l
ek
) =

ml l
ek√

l2
1 + l2

2

Sl l
ek

= (ul
k,S, v

l
k,S, 1), E l l

ek
= (ul

k,E , vl
k,E , 1) (16)

4) Point-Based Image Visual Measurement Residual: The
ek,l

image in Eq.(7) is the point-based image measurement residual
from the re-projection function. Similar to the event-corner
measurement, the l th point-based image feature that is first
observed in the i th keyframe, the residual for its observation
in the k th keyframe is defined as:

ek,l
image =

[
ul

k
vl

k

]
− πc · (T b

c)
−1

· T bk
w · Tw

bi
· T b

c · π−1
c (

1
λc

,

[
ul

i
vl

i

]
)

(17)

where,
[
ul

i , v
l
i

]T is the first observation of the l th point-based
image feature in the i th keyframe.

[
ul

k, v
l
k

]T is the observation
of the same point-based image feature in the k th keyframe.
πc and π−1

c are the projection and back-projection function of
the standard camera, respectively, which include the intrinsic
parameters for the transform between the 2D pixel coordinates
and normalized camera coordinate.

5) IMU Measurement Residual: The ek
imu in Eq.(7) is the

IMU residual from the IMU pre-integration. The raw measure-
ment of angular velocity ωk and acceleration ak from IMU at
time tk are:

âk = ak − Rbk
ω gω

+ bak + na

ω̂k = ωk + bωk + nω (18)

where na , nω are modeled as additive Gaussian noise. bak , bωk

are modeled as random walks. The Notation ˆ(·) is used to rep-
resent noisy measurements. Given the time interval [tk, tk+1]

corresponding to keyframe bk and bk+1. pω
bk+1

, vω
bk+1

, qω
bk+1

can
be propagated in such time interval by using gyroscope and
accelerometer measurements in the world frames as follows:

pω
bk+1

= pω
bk

+ vω
bk

1t +

∫∫ tk+1

tk
(Rω

bk
ak)δt2

vω
bk+1

= vω
bk

+

∫ tk+1

tk
(Rω

bk
ak)δt

qω
bk+1

=

∫ tk+1

tk
qω

bk
⊗

[
0

1
2
ωk

]
δt (19)

Based on Eq.(18), Eq.(19) can be rewritten as follows:

pω
bk+1

− pω
bk

− vω
bk

1t −
1
2

gω1t2

=

∫∫ tk+1

tk
(Rω

bk
(âk − bak − na))δt2

vω
bk+1

− vω
bk

− gω1t

=

∫ tk+1

tk
(Rω

bk
âkδt − Rω

bk
bak δt − Rω

bk
naδt)

qω
bk+1

=

∫ tk+1

tk
qω

bk
⊗

[
0

1
2
(ω̂k − bωk − nω)

]
δt (20)

In order to ensure the pre-integration term is only related to the
inertial measurements and biases in [tk, tk+1], Rbk

ω is multiplied
on both sides of Eq.(20), and we define the pre-integration
term α

bk
bk+1

, β
bk
bk+1

, γ
bk
bk+1

as follows:

α
bk
bk+1

= Rbk
ω

∫∫ tk+1

tk
(Rω

bk
(âk − bak − na))δt2

β
bk
bk+1

= Rbk
ω

∫ tk+1

tk
(Rω

bk
âkδt − Rω

bk
bak δt − Rω

bk
naδt)

γ
bk
bk+1

= qω
bk

⊗ qω
bk+1

(21)

Discretizing Eq.(21) by the zero-order discretization method
as follows:

α̂
bk
bi+1

= α̂
bk
bi

+ β̂
bk
bi

δt +
1
2

R(γ̂
bk
bi

)(âi − bai )δt2

β̂
bk
bi+1

= β̂
bk
bi

+ R(γ̂
bk
bi

)(âi − bai )δt

γ̂
bk
bi+1

= γ̂
bk
bi

⊗

[
1

1
2
(ω̂i − bωi )

]
δt (22)

Eventually, the IMU residual can be derived as follows:

ek
imu =


Rbk ( pω

bk+1
− pω

bk
− vω

bk
1t −

1
2 gω1t2) − α̂

bk
bk+1

Rbk (vω
bk+1

− vω
bk

− gω1t) − β̂
bk
bk+1

2
[
(qω

bk
)−1

⊗ qω
bk+1

⊗ (γ̂
bk
bk+1

)−1
]

xyz
bak+1 − bak

bωk+1 − bωk


(23)

IV. EVALUATION

In this section, we evaluate the effectiveness of our
framework in various challenging sequences using both quan-
titative and qualitative methods in subsection IV-A and IV-B.
We implemented our method with C++ in Ubuntu 20.04 and
ROS Noetic. All sequences are evaluated in real-time using
a laptop with Intel Core i7-11800H and are recorded in
videos (shown on our project website). In subsection IV-C
and IV-D, we demonstrate the quadrotor flight using our
method for the closed-loop state estimator and aggressive flip.
Meanwhile, large-scale experiments are carried out to illustrate
the long-time practicability in subsection IV-F.

A. Evaluation in High-Dynamic-Range Scenarios

For demonstrating the robustness, accuracy, and real-time
capability, we initially evaluate our PL-EIO using different res-
olution event cameras (DAVIS346 (346*260) and DVXplorer
(640*480)) with the ground truth from VICON. All sequences1

are recorded in broad illumination range conditions, or under
aggressive motion. Without loss of generality, we use the

1https://github.com/arclab-hku/Event_based_VO-VIO-SLAM

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on March 17,2024 at 03:44:07 UTC from IEEE Xplore.  Restrictions apply. 



GUAN et al.: PL-EVIO: ROBUST MONOCULAR EVENT-BASED VIO WITH POINT AND LINE FEATURES 9

TABLE I
ACCURACY COMPARISON OF OUR PL-EIO WITH OTHER IMAGE-BASED OR EVENT-BASED VIO WORKS

raw image from DAVIS346 to run the VINS-MONO [36],
PL-VINS [4], and ORB-SLAM3 [42], as image-based com-
parisons. In addition, based on the source code of Ultimate
SLAM [14], we also test the EVIO and EIO versions of
Ultimate SLAM for event-based comparison. The estimated
and ground-truth trajectories are aligned with a 6-DOF trans-
formation (in SE3), using 5 seconds [0-5s] of the resulting
trajectory. We compute the mean position error (Euclidean
distance in meters) as percentages of the total travel distance of
the ground truth, which is calculated by the publicly available
tool [43]. As can be seen from the results in Table I, our
PL-EIO has better performances compared with the other
methods in different resolution event cameras. Especially,
for the results of vicon_aggressive_hdr, our PL-EIO pro-
duces reliable and accurate pose estimation even when the
image-based VIO and VO fail. Besides, compared with our
previous EIO [5], the introduction of the line feature, known as
PL-EIO, demonstrates significant performance improvements
across different resolution event cameras. While the perfor-
mance of PL-EVIO, which incorporates image measurements,
surpasses our EIO [5]. Our experimental observations indicate
that although the image-aid one (PL-EVIO) exhibits notable
performance gains in most sequences, it underperforms in
low-light environments such as vicon_dark1 and vicon_dark2),
as compared to PL-EIO. This could be attributed to the
degradation of point-based image feature tracking in dark
environments.

Regarding the proposed motion compensation algorithm,
as evident from the results, the motion compensation ver-
sion (PL-EIO+) does not exhibit significant enhancements
across various sequences, particularly in scenarios involving
aggressive motion. This outcome could potentially stem from
biases present in the IMU during such aggressive motion.
On the other hand, in this evaluation, the event stream rate
is 60Hz for DAVIS346 and 50Hz for DVXplorer. Such high
frequencies reduced time differences within the same event
stream, Additionally, we observe that motion compensation for
event streams may not be an optimal choice for high-resolution
event cameras due to the trade-off between computational
burden and performance improvement.

It is worth mentioning that the Ultimate-SLAM is just for
reference since we do not deeply fine-tune the parameters
for different sequences (being failure-free is difficult). Since
the illumination would change greatly in our dataset, and
it is very difficult for Ultimate-SLAM to choose a certain
stationary threshold to integrate the event stream into the edge

TABLE II
ACCURACY COMPARISON OF OUR PL-EVIO WITH OTHER
IMAGE/EVENT-BASED VIO IN UZH-FPV DATASET [44]

image. We have tried our best to fine-tune the parameters
of Ultimate-SLAM in sequence vicon_hdr3 to achieve good
performance and use the same parameters to evaluate other
sequences. This also shows that the generalization ability to
integrate the event streams into the edge-image for VIO is
pretty bad since the number of triggered events depends on
many factors, including the resolution of the camera, the
texture of the sense, the illumination, etc.

B. Evaluation in Aggressive Motions

In this section, we evaluate our PL-EVIO in UZH-FPV
dataset [44], which is a high-speed, aggressive visual-inertial
odometry dataset. This dataset includes fast laps around a race-
track with drone racing gates, as well as free-form trajectories
around obstacles. We compare our PL-EVIO with ORB-
SLAM3 (stereo VIO) [42], VINS-Fusion (stereo VIO) [45],
VINS-MONO (monocular VIO) [36], and Ultimate SLAM
(EVIO) [14]. We also computed the mean position error as
percentages of the total traveled distance, while the estimated
trajectories and ground-truth were aligned in SE3 with all
alignments. As can be seen from the results in Table II, our
proposed PL-EVIO achieve better performance even compared
with the stereo VIO using a higher resolution camera. This
dataset is so challenging that most of the sequences using
Ultimate-SLAM and VINS-Fusion failed, while our Pl-EVIO
still can provide reliable and satisfying results. To achieve
optimal performance, deep fine-tuning of parameters is also
required for VINS-MONO.

Furthermore, we also evaluate our PL-EVIO with the other
EIO works in publicly available Event Camera Datasets
[46], which is acquired by the DAVIS240C (240*180, event-
sensor, image-sensor, IMU sensor). It contains extremely fast
6-Dof motion and scenes with HDR. We directly report
the raw result in [5], [13], [14], [28], [29], and [47].
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TABLE III
ACCURACY COMPARISON OF OUR PL-EVIO WITH OTHER EIO/EVIO

WORKS IN DAVIS240C DATASET [46]

Fig. 5. The relative pose error comparison of our PL-EVIO with EIO [13],
Ultimate-SLAM [14], and our EIO [5].

As can be seen from Table III, our PL-EVIO achieves
state-of-the-art performance. Fig.5 presents the relative error
of our PL-EVIO against other methods, for the sequence
box_translation, dynamic_translation and poster_6dof. It’s
important to note that, although the Ultimate-SLAM [14]
(EVIO version) demonstrates performance similar to ours,
it relies on different parameters for different sequence. While
we consider parameter tuning to be impractical, we evaluate
our methods using fixed parameters for various sequences
during the evaluations.

C. Online Quadrotor-Flight Evaluation

To further demonstrate the capabilities of our PL-EVIO,
we perform real-world experiments on a self-designed quadro-
tor platform (shown in Fig.6), carrying a forward-looking
IniVation DAVIS346 sensor. An Intel NUC10i7FNH com-
puter running Ubuntu 20.04 is mounted on our quadrotor for
onboard computational support. We use Pixracer (FMUv4)
autopilot to run the PX4 flight stack. To alleviate disturbance
from the motion capture system’s infrared light on the event
camera, we add an infrared filter on the lens surface of
the DAVIS346 camera. Note that the introduction of the

Fig. 6. Our self-designed quadrotor platform.

Fig. 7. The estimated trajectory of our PL-EVIO on the quadrotor flight
and its comparison against the ground truth (Taking the Onboard_test_1 as
an example).

Fig. 8. Onboard quadrotor flight in screw pattern using our PL-EVIO as
feedback control.

infrared filter might cause the degradation of perception for
both the event and image camera during the evaluation in
subsection IV-A, IV-C, IV-D, and IV-F. The overall weight of
our quadrotor is 1.364kg (GS330 frame with T-Motor F60).

In the experiments, the reference trajectories are generated
offline. The polynomial trajectory generation method [48] is
used to ensure the motion feasibility of the quadrotor. To fol-
low the generated trajectory, a cascaded feed-forward P.I.D.
controller is constructed as a high-level position controller
running on NUC. Given the position, velocity, and acceleration
as inputs, the high-level feed-forward controller computes
desired attitude and throttle sent to the low-level controller
running on PX4.

We conduct four flight experiments to test the performance
of autonomous trajectory tracking using our PL-EVIO. The
quadrotor is commanded to track different patterns as follows
(Offboard and Onboard means using the VICON and our
PL-EVIO as pose feedback control, respectively, while our
PL-EVIO runs real-time and online calculations in the onboard
computer):

1) Offboard_test_1 and Onboard_test_1: The states esti-
mate from the VICON (Offboard_test_1) and our PL-EVIO
(Onboard_test_1) are used for feedback control of the quadro-
tor which is commanded to track a figure-eight pattern with
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Fig. 9. The position, orientation, and the corresponding errors of our PL-EVIO in onboard flight compared with the ground truth from VICON (Taking the
Onboard_test_1 as example).

TABLE IV
ACCURACY COMPARISON OF OUR PL-EVIO WITH

GROUNDTRUTH IN QUADROTOR FLIGHT

Fig. 10. The estimated trajectory of our PL-EVIO on the quadrotor flip, and
image/event measurement.

each circle being 0.625m in radius and 1.2m in height,
shown in Fig.7. The yaw angle of the commanded figure-eight
pattern is fixed. The quadrotor follows this trajectory ten times
continuously during the experiment. The 1000-HZ online
calculation of our PL-EVIO is also recorded for accuracy
comparison.

2) Onboard_test_2: The states estimate from our PL-EVIO
are used for feedback control of the quadrotor which is com-
manded to track a screw pattern shown in Fig.8. The quadrotor
follows this trajectory ten times continuously during the exper-
iment. The 1000-HZ onboard state estimates of our PL-EVIO
enable real-time feedback control of the quadrotor. The ground

truth is obtained from VICON. The translation and rotation
error are shown in Table IV. Taking the Onboard_test_1 as an
example, in Fig.7 and Fig.9, we further illustrate the estimated
trajectories (translation and rotation) of our PL-EVIO against
the ground truth, as well as their corresponding errors. The
total trajectory length is 101.15m. The translation errors in
the X, Y, and Z dimensions are all within 0.1m, while the
rotation error of the Roll and Pitch dimensions are within 2◦,
and the one in the Yaw dimension is within 6◦.

D. Aggressive Quadrotor-Flip Evaluation

In this section, we further conduct onboard quadrotor flip
experiments to evaluate the performance of our PL-EVIO in
aggressive motion. The estimated trajectory of our PL-EVIO
compared with the ground truth from VICON during the flip
evaluations can be seen in Fig.10. The total length of the
trajectory is 15m. The mean translation error and the mean
angular error are 0.097m and 6.0◦, respectively. Despite the
extreme velocity of the motion, our PL-EVIO successfully
tracks the quadrotor pose with high accuracy. Note that our
PL-EVIO is run onboard during the quadrotor flip experiments.
There are only a few image measurements captured during
aggressive motion due to motion blur, whereas the event mea-
surements are severely limited when the quadrotor is hovering.
Thanks to our well-designed feature management and the
complementarity of three kinds of features, our PL-EVIO can
provide robust and good performance in multiple quadrotor
flip experiments.

E. Real-Time Analysis

We assessed the real-time performance of our system on
quadrotor flight using an Intel NUC10i7FNH as the com-
puting platform. The computational allocations are presented
in Table V. The proposed algorithm sequentially processes
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Fig. 11. (a) The estimated trajectory of our PL-EVIO in the outdoor environment. We also visualize the detection and tracking situation of the event-corner
features, line-based event features, and point-based image features, during the experiment. The combination of these features provides more structures and
constraints in the scene that ensure robustness. (b) The estimated trajectory of our PL-EVIO as well as the detection and matching performance of the
line-based event features.

the event queue, with the event front-end completed within
9 ms, the image front-end completed within 3 ms, and overall
optimization completed within 50 ms, without any hardware
acceleration. In order to achieve low latency, we employ a
loosely-coupled approach to directly propagate the latest EVIO
estimation along with the IMU measurements. This results
in IMU-rate EVIO outputs that can reach up to 1000 Hz.
This is critical for achieving onboard quadrotor flight, using
our PL-EVIO as pose feedback control, as discussed in
Sections IV-C and IV-D. Due to the reliable, low-drift, and
low-latency characteristics of our PL-EVIO, the flight control
system can quickly obtain accurate pose feedback, thereby
ensuring the success of onboard quadrotor flight. To fur-
ther demonstrate the real-time capabilities of our proposed

PL-EVIO system, which offers onboard pose feedback for
quadrotor flights, we encourage readers to refer to the video
demos.2

F. Outdoor Large-Scale Evaluation

1) Natural Scenarios: In this section, we evaluate our
PL-EVIO system in a large-scale environment that encom-
passes the HKU campus. This environment includes features
such as moving pedestrians, low-texture areas, long-term
movement, strong sunlight, and indoor & outdoor transitions.
We also return to the same location after a large loop to

2https://b23.tv/VqGMkyD
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TABLE V
TIME CONSUMPTION OF DIFFERENT MODULES IN OUR PL-EVIO

evaluate the loop closure. The total evaluation length is
approximately 980 m, covering an area of approximately
160 m in length, 100 m in width, and 10 m in height
changes. The estimated trajectory is aligned with the Google
map and can be seen in Fig.11(a). The results show that
our PL-EVIO performed almost drift-free in this long-term
motion evaluation. The complementarity of three different
kinds of features (e.g. line-based event features for human-
made environment, point-based event features for HDR scene,
and point-based image features for good lighting scene) ensure
the robust and reliable state estimation.

2) Human-Made Scenarios: We further conduct additional
evaluations specifically focusing on building scenarios. Uti-
lizing the line features can better represent the geometric
information constraints in Human-made structures, as illus-
trated in Fig.11(b). The experimental results demonstrate that
after a long-distance loop of approximately 260 m within the
interior of the building, our PL-EVIO system maintains high
accuracy, forming a complete square shape without significant
drifts. To assess this accuracy, we specifically choose the gate
of the building as the starting and ending point for quantitative
evaluation, and the end-to-end distance showed an error of
0.61 m. Owing to the additional geometric structural informa-
tion provided by our proposed event-based line features, our
PL-EVIO achieves low drift and reliable performance in this
large-scale environment.

V. CONCLUSION

In this paper, we propose a robust, highly-accurate, and real-
time optimization-based monocular VIO that tightly fuses the
event, image, and IMU together, with point and line features.
The combination of point-based event-corner features, line-
based event features, and point-based image features would
provide more geometric constraints on the structure of the
environment. Finally, we show superior performance by com-
paring against other state-of-the-art open-source image-based
or event-based VIO implementations in different challenge
datasets. Meanwhile, through extensive experiments includ-
ing extremely aggressive motion and large-scale evaluation,
we also show that our PL-EVIO pipeline is able to leverage
the properties of the standard camera and the event camera
with different features to provide robust state estimation.
We hope that this work can inspire other researchers and
industries to push wide applications for event cameras on

robotics and perception. In our future work, event-based multi-
sensor fusion, including a wider range of local perception
(such as LiDAR), and global perception (such as visible light
positioning [49] for indoor, or GPS for outdoor), might be
deeply studied to exploit the complementary advantage of
different sensors with event cameras.

APPENDIX A
ABLATION STUDY

Our approach involves extracting event-corner features from
events-only data and line-based features from the event mat.
These two types of features are then associated using a
spatio-temporal locality scheme based on exponential decay,
which is commonly referred to as TS. The TS was converted
from SAE with the exponential decay kernel. To enhance the
accuracy of event-based point and line tracking, we incorporate
polarity into the TS (Tp(x, t)), which can be represented as
follows:

Tp(x, t) = p · exp(−
t − tlast (x)

η
) (A-1)

We use the LK optical flow on the Tp(x, t) to associate the
current event-corner with the most recent event-corner in the
kernel operation, assuming that it is the same event-corner in
a recent position. Our approach utilizes the motion variance
characteristics of the Tp(x, t) to retain relevant context while
associating event-based point and line features into tracks
to ensure computational efficiency in the front-end. In our
previous work [5], we have presented the process of gen-
erating uniform event-corner features (as shown in Fig.12)
and discussed the rationale for employing our Tp(x, t) for
tracking event-corner features. Additionally, we also provided
the normalized TS without polarity (Tnp(x, t)):

Tnp(x, t) = (
255.0

max(T ′) − min(T ′)
) · (T ′

− min(T ′)) (A-2)

where, T ′ can be obtained from Eq.2.

A. Ablation Study on Different Event Representations for
Event-Based Feature Tracking

In this section, we focus on conducting an ablation study
of the event-based point tracking performance using differ-
ent event representations, including our Tp(x, t), Tnp(x, t),
TS in [26], and the event accumulated image in [14] and [24].
It should be noted that we previously only used Tnp(x, t) for
loop closure detection, while we merely investigate its feature
tracking performance in front-end for this ablation study.
During the ablation experiments, we employ our PL-EIO
framework to control variables by only altering different event
representations used for event-based feature tracking, while
keeping the event feature points generated from asynchronous
event streams unchanged. The qualitative results are presented
in Fig. 13, and the quantitative evaluations are reported in
the “Event Representations” section of Table VI. We utilize
absolute trajectory error (ATE) aligning the estimated trajec-
tory with ground truth using 6-DOF transformation (in SE3) to
quantitatively evaluate the accuracy. The results indicate that
only our proposed Tp(x, t) is capable of reliably estimating the
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Fig. 12. Event-corner features generation. The event-corner features are firstly extracted from the asynchronous event stream (a), then the TS with polarity
(b) is used as a mask to further select the event-corner features, ensuring a uniform distribution.

Fig. 13. The performance of the event-corner features tracking in different event representations. Note that the VIO is a highly nonlinear system, it is hard
to prove the performance through a single timestamp. Therefore we refer the readers to our video demo:https://b23.tv/eIRQMST, which shows the reliable
performance of our PL-EVIO.

TABLE VI
ACCURACY RESULT OF THE ABLATION STUDY IN HKU_AGG_FLIP

state, while other event representations used for event-based
feature tracking failed in the challenge situation. This could
be due to the insufficient intensity information available to
satisfy the requirements of LK optical flow for event-based
feature tracking. For example, the image generated from event
streams [14], [24] is a binary edge image consisting of only
two possible pixel values (0 or 1), which lacks the necessary
information for accurately calculating gradients. Consequently,
it becomes difficult to determine the direction and magnitude
of motion of feature points, resulting in increased difficulty for
optical flow to remove local outliers. In contrast, our TS with
polarity can ensure reliable data association between event
features of adjacent frames, which effectively prevents miss-
matches.

B. Ablation Study on Time Decay Kernels of the TS With
Polarity

In order to further investigate the impact of time decay
kernels on our event representations (Tp(x, t)) used for event
feature tracking, we conducted ablation experiments on the
time decay kernels. The qualitative results on the event-based
point and line features are shown in Fig.14. From Fig.14(a),
we can observe that the tracking and matching performance
of event-based point features and line features are not signifi-
cantly different across various exponential decay kernels. This
may be attributed to the normal texture conditions and fewer
triggered events at a far distance in outdoor environments.
However, upon careful observation, we still can notice that
larger time decay kernels result in coarser edge contours in
the edge regions, which may introduce systematic errors to
the visual front-end. In contrast, in indoor environments (as
shown in Fig.14(b)) with abundant texture, we found that the
larger time decay kernels lead to a significant decrease in
the successful matching of both event-based line and point
features. This might be due to the trailing effect caused by a
large time decay kernel, which can create negative effects (i.e.
lead to failure during aggressive motion) similar to motion
blur. Therefore, we choose a time decay kernel of 20ms to
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Fig. 14. The tracking and matching performance of event-based point and line features in various time decay parameters. We only evaluate the tracking and
matching performance in (a) outdoor environments with large-scale and (b) indoor environments with aggressive motion, respectively.

ensure sufficient information for event-based feature match-
ing and tracking while minimizing blur and trailing effects.

We quantitatively evaluate the influence of the time decay
kernel on the performance of pose estimation through the Time
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Decay Kernel part of Table VI. Furthermore, we also compare
the performance of our PL-EVIO using Tp(x, t) as event
representation with other event representations from [14], [24],
and [26], in the Methods part of Table VI.

REFERENCES

[1] G. Gallego et al., “Event-based vision: A survey,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 44, no. 1, pp. 154–180, Jan. 2022.

[2] A. Pumarola, A. Vakhitov, A. Agudo, A. Sanfeliu, and
F. Moreno-Noguer, “PL-SLAM: Real-time monocular visual SLAM
with points and lines,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2017, pp. 4503–4508.

[3] B. Xu, P. Wang, Y. He, Y. Chen, Y. Chen, and M. Zhou, “Leveraging
structural information to improve point line visual-inertial odometry,”
IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 3483–3490, Apr. 2022.

[4] Q. Fu et al., “PL-VINS: Real-time monocular visual-inertial SLAM with
point and line features,” 2020, arXiv:2009.07462.

[5] W. Guan and P. Lu, “Monocular event visual inertial odometry based
on event-corner using sliding windows graph-based optimization,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2022,
pp. 2438–2445.

[6] I. Alzugaray and M. Chli, “ACE: An efficient asynchronous corner
tracker for event cameras,” in Proc. Int. Conf. 3D Vis. (3DV), Sep. 2018,
pp. 653–661.

[7] A. Z. Zhu, N. Atanasov, and K. Daniilidis, “Event-based feature tracking
with probabilistic data association,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2017, pp. 4465–4470.

[8] A. Dietsche, G. Cioffi, J. Hidalgo-Carrió, and D. Scaramuzza, “Power-
line tracking with event cameras,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Sep. 2021, pp. 6990–6997.

[9] C. Le Gentil, F. Tschopp, I. Alzugaray, T. Vidal-Calleja, R. Siegwart,
and J. Nieto, “IDOL: A framework for IMU-DVS odometry using lines,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2020,
pp. 5863–5870.

[10] G. Chen, H. Cao, J. Conradt, H. Tang, F. Rohrbein, and A. Knoll, “Event-
based neuromorphic vision for autonomous driving: A paradigm shift for
bio-inspired visual sensing and perception,” IEEE Signal Process. Mag.,
vol. 37, no. 4, pp. 34–49, Jul. 2020.

[11] B. Kueng, E. Mueggler, G. Gallego, and D. Scaramuzza, “Low-latency
visual odometry using event-based feature tracks,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst. (IROS), Oct. 2016, pp. 16–23.

[12] D. Gehrig, H. Rebecq, G. Gallego, and D. Scaramuzza, “EKLT: Asyn-
chronous photometric feature tracking using events and frames,” Int.
J. Comput. Vis., vol. 128, no. 3, pp. 601–618, Mar. 2020.

[13] H. Rebecq, T. Horstschaefer, and D. Scaramuzza, “Real-time visual-
inertial odometry for event cameras using keyframe-based nonlinear
optimization,” in Proc. Brit. Mach. Vis. Conf., 2017, pp. 1–8.

[14] A. R. Vidal, H. Rebecq, T. Horstschaefer, and D. Scaramuzza, “Ultimate
SLAM? Combining events, images, and IMU for robust visual SLAM
in HDR and high-speed scenarios,” IEEE Robot. Autom. Lett., vol. 3,
no. 2, pp. 994–1001, Apr. 2018.

[15] E. Rosten, R. Porter, and T. Drummond, “Faster and better: A machine
learning approach to corner detection,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 32, no. 1, pp. 105–119, Jan. 2010.

[16] J. Shi, “Good features to track,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jul. 1994, pp. 593–600.

[17] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in Proc. 7th Int. Joint Conf. Artif.
Intell., Vancouver, BC, Canada, vol. 2, 1981, pp. 674–679.

[18] X. Lagorce, G. Orchard, F. Galluppi, B. E. Shi, and R. B. Benosman,
“HOTS: A hierarchy of event-based time-surfaces for pattern recog-
nition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 7,
pp. 1346–1359, Jul. 2017.

[19] V. Vasco, A. Glover, and C. Bartolozzi, “Fast event-based Harris
corner detection exploiting the advantages of event-driven cameras,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2016,
pp. 4144–4149.

[20] I. Alzugaray and M. Chli, “Asynchronous corner detection and tracking
for event cameras in real time,” IEEE Robot. Autom. Lett., vol. 3, no. 4,
pp. 3177–3184, Oct. 2018.

[21] D. Weikersdorfer, R. Hoffmann, and J. Conradt, “Simultaneous local-
ization and mapping for event-based vision systems,” in Proc. Int. Conf.
Comput. Vis. Syst. Cham, Switzerland: Springer, 2013, pp. 133–142.

[22] A. Censi and D. Scaramuzza, “Low-latency event-based visual odom-
etry,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2014,
pp. 703–710.

[23] H. Kim, S. Leutenegger, and A. J. Davison, “Real-time 3D reconstruc-
tion and 6-DoF tracking with an event camera,” in Proc. Eur. Conf.
Comput. Vis. Cham, Switzerland: Springer, 2016, pp. 349–364.

[24] H. Rebecq, T. Horstschaefer, G. Gallego, and D. Scaramuzza, “EVO:
A geometric approach to event-based 6-DOF parallel tracking and map-
ping in real time,” IEEE Robot. Autom. Lett., vol. 2, no. 2, pp. 593–600,
Apr. 2017.

[25] H. Rebecq, G. Gallego, E. Mueggler, and D. Scaramuzza, “EMVS:
Event-based multi-view stereo—3D reconstruction with an event camera
in real-time,” Int. J. Comput. Vis., vol. 126, no. 12, pp. 1394–1414,
Dec. 2018.

[26] Y. Zhou, G. Gallego, and S. Shen, “Event-based stereo visual odometry,”
IEEE Trans. Robot., vol. 37, no. 5, pp. 1433–1450, Oct. 2021.

[27] A. Hadviger, I. Cvišic, I. Markovic, S. Vražic, and I. Petrovic, “Feature-
based event stereo visual odometry,” in Proc. Eur. Conf. Mobile Robots
(ECMR), Aug. 2021, pp. 1–6.

[28] A. Z. Zhu, N. Atanasov, and K. Daniilidis, “Event-based visual inertial
odometry,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 5816–5824.

[29] F. Mahlknecht et al., “Exploring event camera-based odometry for plan-
etary robots,” IEEE Robot. Autom. Lett., vol. 7, no. 4, pp. 8651–8658,
Oct. 2022.

[30] E. Mueggler, G. Gallego, H. Rebecq, and D. Scaramuzza, “Continuous-
time visual-inertial odometry for event cameras,” IEEE Trans. Robot.,
vol. 34, no. 6, pp. 1425–1440, Dec. 2018.

[31] P. Chen, W. Guan, and P. Lu, “ESVIO: Event-based stereo visual inertial
odometry,” IEEE Robot. Autom. Lett., vol. 8, no. 6, pp. 3661–3668,
Jun. 2023.

[32] Z. Liu, D. Shi, R. Li, and S. Yang, “ESVIO: Event-based stereo visual-
inertial odometry,” Sensors, vol. 23, no. 4, p. 1998, 2023.

[33] W. Chamorro, J. Solà, and J. Andrade-Cetto, “Event-based line SLAM
in real-time,” IEEE Robot. Autom. Lett., vol. 7, no. 3, pp. 8146–8153,
Jul. 2022.

[34] W. O. C. Hernández, J. Andrade-Cetto, and J. Solà Ortega, “High-speed
event camera tracking,” in Proc. 31st Brit. Mach. Vis. Virtual Conf.,
2020, pp. 1–12.

[35] R. G. von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall, “LSD:
A fast line segment detector with a false detection control,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 32, no. 4, pp. 722–732, Apr. 2010.

[36] T. Qin, P. Li, and S. Shen, “VINS-Mono: A robust and versatile
monocular visual-inertial state estimator,” IEEE Trans. Robot., vol. 34,
no. 4, pp. 1004–1020, Aug. 2018.

[37] T. Qin and S. Shen, “Robust initialization of monocular visual-inertial
estimation on aerial robots,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Sep. 2017, pp. 4225–4232.

[38] D. Falanga, K. Kleber, and D. Scaramuzza, “Dynamic obstacle avoid-
ance for quadrotors with event cameras,” Sci. Robot., vol. 5, no. 40,
Mar. 2020, Art. no. eaaz9712.

[39] L. Zhang and R. Koch, “An efficient and robust line segment matching
approach based on LBD descriptor and pairwise geometric consis-
tency,” J. Vis. Commun. Image Represent., vol. 24, no. 7, pp. 794–805,
Oct. 2013.

[40] G. Zhang, J. H. Lee, J. Lim, and I. H. Suh, “Building a 3-D line-
based map using stereo SLAM,” IEEE Trans. Robot., vol. 31, no. 6,
pp. 1364–1377, Dec. 2015.

[41] A. Bartoli and P. Sturm, “The 3D line motion matrix and alignment of
line reconstructions,” Int. J. Comput. Vis., vol. 57, no. 3, pp. 159–178,
May 2004.

[42] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. M. Montiel, and
J. D. Tardós, “ORB-SLAM3: An accurate open-source library for visual,
visual–inertial, and multimap SLAM,” IEEE Trans. Robot., vol. 37,
no. 6, pp. 1874–1890, Dec. 2021.

[43] Michael Grupp. (2017). EVO: Python Package for the Evalua-
tion of Odometry and SLAM. [Online]. Available: https://github.
com/MichaelGrupp/evo

[44] J. Delmerico, T. Cieslewski, H. Rebecq, M. Faessler, and D. Scaramuzza,
“Are we ready for autonomous drone racing? The UZH-FPV drone
racing dataset,” in Proc. Int. Conf. Robot. Autom. (ICRA), May 2019,
pp. 6713–6719.

[45] T. Qin, J. Pan, S. Cao, and S. Shen, “A general optimization-based
framework for local odometry estimation with multiple sensors,” 2019,
arXiv:1901.03638.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on March 17,2024 at 03:44:07 UTC from IEEE Xplore.  Restrictions apply. 



GUAN et al.: PL-EVIO: ROBUST MONOCULAR EVENT-BASED VIO WITH POINT AND LINE FEATURES 17

[46] E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck, and D. Scaramuzza,
“The event-camera dataset and simulator: Event-based data for pose
estimation, visual odometry, and SLAM,” Int. J. Robot. Res., vol. 36,
no. 2, pp. 142–149, Feb. 2017.

[47] I. Alzugaray and M. Chli, “Asynchronous multi-hypothesis tracking
of features with event cameras,” in Proc. Int. Conf. 3D Vis. (3DV),
Sep. 2019, pp. 269–278.

[48] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in Proc. IEEE Int. Conf. Robot. Autom.,
May 2011, pp. 2520–2525.

[49] Z. Yan, W. Guan, S. Wen, L. Huang, and H. Song, “Multirobot coopera-
tive localization based on visible light positioning and odometer,” IEEE
Trans. Instrum. Meas., vol. 70, pp. 1–8, 2021.

Weipeng Guan received the bachelor’s and master’s
degrees from the South China University of Tech-
nology. He is currently pursuing the Ph.D. degree
with The University of Hong Kong. He has worked
with several reputable organizations, including Sam-
sung Electronics, Huawei Technologies, TP-LINK,
The Chinese Academy of Sciences, The Chinese
University of Hong Kong, and The Hong Kong
University of Science and Technology. He was a
Technical Consultant for multiple companies, such
as TCL. Moreover, he has authored or coauthored

over 60 research articles in prestigious international journals and conferences
and holds more than 40 authorized patents. His research interests primarily
focus on robotics, event-based VO/VIO/SLAM, and visible light positioning.

Peiyu Chen received the B.Sc. degree in automa-
tion from the Nanjing University of Science and
Technology, China, in 2020, and the M.Sc. degree
in computer control and automation from Nanyang
Technological University, Singapore, in 2022. He is
currently pursuing the Ph.D. degree with The Uni-
versity of Hong Kong. His research interests include
robotics, visual-inertial simultaneous localization
and mapping, and nonlinear control.

Yuhan Xie (Member, IEEE) received the B.Eng.
degree in automation from the School of Automa-
tion Science and Electrical Engineering, Beihang
University, in 2020. She is currently pursuing the
M.Phil. degree in robotics planning and control with
the Department of Mechanical Engineering, The
University of Hong Kong. Her research interests
include unmanned aerial vehicles plan and control
with deep reinforcement learning.

Peng Lu received the B.Sc. degree in automatic con-
trol and the M.Sc. degree in nonlinear flight control
from Northwestern Polytechnical University (NPU)
and the Ph.D. degree from the Delft University of
Technology (TU Delft) in 2016. He continued his
journey on flight control with TU Delft. After that,
he shifted a bit from flight control and started to
explore control for ground/construction robotics with
ETH Zürich (ADRL Laboratory) as a Post-Doctoral
Researcher in 2016. He also had a short but nice
journey with the University of Zurich & ETH Zürich

(RPG Group), where he was working on vision-based control for UAVs as a
Post-Doctoral Researcher. He was an Assistant Professor in autonomous UAVs
and robotics with The Hong Kong Polytechnic University prior to joining The
University of Hong Kong in 2020.

He has received several awards, such as third place in 2019 IROS
autonomous drone racing competition and best graduate student paper finalist
in AIAA GNC (top conference in aerospace). He serves as an Associate Editor
for 2020 IROS (top conference in robotics) and the Session Chair/Co-Chair for
conferences, such as IROS and AIAA GNC for several times. He also gave a
number of invited/keynote speeches at multiple conferences, universities, and
research institutes.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: The University of Hong Kong Libraries. Downloaded on March 17,2024 at 03:44:07 UTC from IEEE Xplore.  Restrictions apply. 


